기초 수학 예제

인수분해하기 16y^2-49+3(4y+7)^2
단계 1
로 바꿔 씁니다.
단계 2
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
분배 법칙을 적용합니다.
단계 2.2
분배 법칙을 적용합니다.
단계 2.3
분배 법칙을 적용합니다.
단계 3
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.1.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1
를 옮깁니다.
단계 3.1.2.2
을 곱합니다.
단계 3.1.3
을 곱합니다.
단계 3.1.4
을 곱합니다.
단계 3.1.5
을 곱합니다.
단계 3.1.6
을 곱합니다.
단계 3.2
에 더합니다.
단계 4
분배 법칙을 적용합니다.
단계 5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
을 곱합니다.
단계 5.2
을 곱합니다.
단계 5.3
을 곱합니다.
단계 6
에 더합니다.
단계 7
에 더합니다.
단계 8
인수분해된 형태로 를 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1.1
에서 를 인수분해합니다.
단계 8.1.2
에서 를 인수분해합니다.
단계 8.1.3
에서 를 인수분해합니다.
단계 8.1.4
에서 를 인수분해합니다.
단계 8.1.5
에서 를 인수분해합니다.
단계 8.2
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1.1.1
에서 를 인수분해합니다.
단계 8.2.1.1.2
+ 로 다시 씁니다.
단계 8.2.1.1.3
분배 법칙을 적용합니다.
단계 8.2.1.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 8.2.1.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 8.2.1.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 8.2.2
불필요한 괄호를 제거합니다.